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Abstract

Charge densities and crystal structures can be deter-
mined routinely from X-ray diffraction as X-ray
scattering is relatively weak and single scattering can
be assumed. The strong dynamical diffraction of high-
energy electrons has prevented electron diffraction from
being used in the same way. Dynamical diffraction
describes both the propagation of the Bragg diffracted
wave in the crystal and the scattering by the crystal
potential. The balance between these two processes
changes as a function of voltage due to relativistic
effects. The difference in diffracted intensities recorded
at two voltages is shown to be directly proportional to
the crystal potential. This is con®rmed by calculations
using ®rst-order perturbation theory which show
negligible differences compared to exact calculation. It
should therefore be possible to use differences in
intensity measured as a function of voltage to determine
the crystal potential directly. If the full complex wave
function is available, then there is a particularly simple
procedure to recover the potential, even under dyna-
mical conditions.

1. Introduction

The use of X-rays and neutron diffraction to determine
crystal structures has now become routine. X-ray and
neutron interactions with matter are relatively weak and
single (or kinematical) scattering in the specimen is
assumed by all methods for crystal structure analysis.
There is still the problem of determining the phase of
diffracted beams, but this can be addressed by a number
of methods. High-energy electrons transmitted through
electron transparent specimens are scattered many
times by the crystal potential and the diffraction is
dynamical rather than kinematic. In general, it is not
possible to write a closed-form expression for the
diffracted intensities in terms of the Fourier coef®cients
of the crystal potential. Electron diffraction has there-
fore only been used to determine crystal structures of
biological specimens less than 50 AÊ thick, where the
scattering is approximately kinematic.

It is sometimes possible to estimate phases from
images also recorded in the electron microscope rather
than use X-ray methods for determining the phase. One
might think that an image would be a direct repre-
sentation of the structure and avoid the need to solve
explicitly for phases. This would only be true for a
resolution that is better than the point resolution of the
microscope and even under these conditions the image
is considerably changed by microscope aberrations. In
principle, focal series reconstruction or holography can
be used to eliminate the microscope effects and recover
the wave function at the exit surface of the specimen.
Under dynamical diffraction conditions, there still
remains the problem of converting the complex wave
function into the crystal potential. This seems no less
daunting than working with the unphased intensity
measurements from electron diffraction!

The quest for the method to ®nd Fourier coef®cients
of potential from electron microscope measurements
(diffraction or imaging) has been the `holy grail' of
electron diffraction theory for many years. Early work
concentrated on extracting a limited number of Fourier
coef®cients of potential from convergent-beam patterns
or using the critical-voltage effect (Lally et al., 1972).
These methods all relied on simpli®cations in the form
of analytically tractable two- or three-beam relation-
ships, sometimes using symmetry to bring about the
appropriate reduction. About twenty years ago, Alec
Moodie and I searched for a closed-form solution using
Lie algebra (Johnson et al., 1977). We were encouraged
to do this by an interesting Pauli matrix representation
of two-beam dynamical diffraction theory by Dr A. P.
Young. Ultimately, this approach failed for the general
problem, though Alec Moodie went on to use some of
the ideas in a very elegant solution to the three-beam
problem. He showed how coef®cients of potential could
be determined from lines of two-beam form in centro-
symmetric crystals and related his approach to the
intersecting-Kikuchi-line (Gjùnnes & Hùier, 1971) and
critical-voltage methods (Lally et al., 1972).

The problem of determining the Fourier coef®cients
of potential can be seen as a standard problem in
nonlinear least-squares ®tting. The direct re®nement of
coef®cients of potential and structure factors from
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complete convergent-beam patterns has bene®ted
enormously from the increase in computing capabilities.
Zuo & Spence (Zuo & Spence, 1991; Zuo et al., 1989)
initially used a Simplex method to ®t measurements by
minimizing �2 between measurement and calculation
along a systematic line in GaAs. Bird & Saunders (1992)
®tted the [110] zone-axis pattern of GaP using a quasi
Newton method. These techniques are powerful
methods to re®ne coef®cients of potential from a good
starting estimate, such as neutral-atom scattering factors
(Peng & Zuo, 1995). They are unable to provide a
solution for a totally unknown potential in a general
complex structure. The surface representing the varia-
tion of �2 as a function of coef®cients of potentials has
too many closely spaced local minima which are hard to
avoid, even with the help of techniques such as simu-
lated annealing.

Other approaches to retrieving coef®cients of poten-
tial assume that the complex wave function at the exit
surface of the crystal is available. This need not be
limited to the narrow range of low-order Bragg beams,
the phases of which can be determined by holography
(Lichte, 1986) or focal-series reconstruction. Spence
(1998) has shown how Bragg beams in convergent-beam
patterns with slightly overlapping discs can be phased in
pairs moving outwards from the 000 disc.

The wave function at the exit surface is given by

u�t� � Su�0�; �1�
where S is the scattering matrix

S � exp�iAt�: �2�
The coef®cients of potential are the off-diagonal
elements of the matrix A; the diagonal elements are the
excitation errors. In the phase-grating approximation,
the Ewald sphere is ¯at and the matrix A represents only
the potential. The potential is given by taking the
logarithm of the complex wave function in real space.
Schemes using the phase-grating approximation as a
starting point have been proposed by Van Dyck (1985),
Gribelyuk (1991) and Beeching & Spargo (1993),
though Spargo et al. (1994) later showed that his scheme
would fail under dynamical conditions when different
Bloch waves dominate.

The general idea behind most methods based on the
scattering matrix S is to determine all the elements
of S, and take the logarithm by diagonalization. One
measurement only gives a single column of S, and it is
necessary to ®ll in all the elements of S by appropriate
tilting. The remaining problem arises from the non-
uniqueness of the logarithm of a complex number. This
can be solved either by carefully ordering the eigen-
values or recognizing that the diagonal elements of the
A matrix recovered by the process must equal the
excitation errors (Allen et al., 1999).

Ideally, any method would be based on a theory in
which the unknown coef®cients of potential were lin-

early related to experimentally observed quantities.
Owing to relativistic effects, the off-diagonal elements of
the A matrix proportional to the Fourier coef®cients of
potential have a different variation with voltage than the
diagonal excitation error terms. The difference between
the intensities recorded at two accelerating voltages
differing by a small amount (less than 20 kV) can then
be written as a ®rst-order perturbation which is linearly
dependent on the Fourier coef®cients of potential.
Unfortunately, this simple relationship cannot be used
directly as it is also necessary to know the eigenvectors
which themselves depend on the potential. The differ-
ences between intensities at different voltages can still
be used to generate a response surface as a function of
coef®cients of potential. In mathematical terms, this
surface is a hypersurface in a vector space where the
vector elements are the Fourier coef®cients of potential.
This surface has a global minimum for the vector
corresponding to the `correct' potential. Standard
methods of nonlinear parameter estimation can be used,
starting with an initial estimate. The real question is
whether the response surface has many local minima
and how good an initial estimate is needed to ensure
convergence on the global minimum. Plotting curves
representing the response surface for a number of
materials shows that a starting vector with initial esti-
mates that are up to 40% different from the correct
value will successfully converge. The width of the global
minimum depends on the voltage difference chosen, so
in principle it should be possible to select different
experimental conditions according to the degree of
con®dence in the initial estimate. If the complete
complex exit surface wave function were to be measured
at two voltages, then the potential could be recovered
using a simple scheme based on ideas similar to those
used in the multislice formulation of dynamical diffrac-
tion.

2. Perturbation theory

From the time-independent ShroÈ dinger equation, with
the assumption of small-angle forward scattering, it is
possible to write the following matrix expression for the
amplitudes of the beams at the exit surface of the
specimen:

u�t� � exp�iAt�u�0�; �3�
where u(z) is a vector representing the beam amplitudes
at depth z

u�t� �
'0�t�
'g�t�
'h�t�

..

.

26664
37775 �4�

and A is a matrix given by
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A �

0 Uÿg Uÿh � � �
Ug Sg Ugÿh � � �
Uh Uhÿg Sh � � �
..
. ..

. ..
. . .

.

26664
37775: �5�

The diagonal elements are the excitation errors and
come from the kinetic energy part of the SchroÈ dinger
equation, and can be written as

sg � ��kt � g�2 ÿ k2
t �=2K; �6�

where kt is the tangential component of the incident
wave vector and K is the wave vector of the fast electron
in the crystal. The off-diagonal terms are related to the
Fourier coef®cients of the potential

Ug � meVg=h- 2K; �7�
where m is the mass of the electron and e is the elec-
tronic charge, and are therefore inversely proportional
to the velocity of the fast electron. Accelerating voltages
of 100 kV and above used in electron microscopes
correspond to energies that are of the same order of
magnitude as the rest energy of the electron, 511.6 keV,
and relativistic corrections for the mass and wave vector
must be used in equations (6) and (7). In terms of the
accelerating voltage, v, the relativistic mass is given by

m � m0�1� ev=m0c2� �8�
and the wave vector is

K � �ev�2m0c2 � ev��1=2=h- c; �9�
where m0 is the rest mass. If the change in voltage is �v,
then the change in the diagonal elements of the matrix A
is

�sg � ÿ
�m0c2 � eV��v

�2m0c2 � eV�v sg �10�

and the change in the off-diagonal elements is

�Ug �
"

e�v

�ev�m0c2� ÿ
�m0c2 � ev��v

�2m0c2 � ev�v

#
Ug: �11a�

The off-diagonal terms, U0g, related to `absorption' by
inelastic scattering processes, are inversely proportional
to the square of the electron velocity and any pertur-
bation due to voltage change is twice as large.

�U0g � 2

"
e�v

�ev�m0c2� ÿ
�m0c2 � ev��v

�2m0c2 � eV�v

#
U0g: �11b�

The second term in the square brackets is the difference
due to the relativistic expression for the mass.

A convenient way to calculate the amplitudes at the
exit surface of the crystal is to diagonalize the matrix A,

AC � Ck �12�
and write (3) as

u�t� � C exp�ikt�Cÿ1u�0�; �13�
where C is the eigenvector matrix and k the eigenvalue
vector.

In component form, the amplitude becomes

'g�t� �
P

j

Cj
g exp�i�jt�C�j0 �14�

and the intensity for each beam can be written as

Ig�t� �
P
jj0

Cj
gC�j

0
g exp�i��j ÿ �j0 �t�C�j0 C

j0
0 : �15�

The changes in the matrix A can be considered as a ®rst-
order perturbation �A. The eigenvalue equation is now

�A��A��C��C� � �C��C��k��k�: �16�
The change in the eigenvalue is given by the diagonal
elements of

�k � Cÿ1AC �17�
and the change in eigenvector �C is

�C � CB; �18a�
where

Bij � C�ig �AghC
j
h=��j ÿ �i�: �18b�

The perturbation alters both the eigenvalues and the
eigenvectors (Rez, 1979) and the vector representing the
difference in amplitude for the various beams is

�u�t� � �CB exp�ikt�Cÿ1 ÿ C exp�ikt�BCÿ1

� C�i�kt�Cÿ1�u�0� �19�
to ®rst order. Keeping the eigenvalue change �k in the
exponential would not be consistent with a ®rst-order
perturbation theory as it generates terms up to in®nite
order. Peng (1997) makes a distinction between ®rst-
order perturbation theories where changes in eigenvalue
are retained in exponentials and ®rst-order tensor
theories where the exponential is expanded. By
combining equations (10), (11), (17), (18), (19), the
coef®cients of potential can now be shown to be linearly
related to the difference between the changes in exci-
tation error and the changes in intensity

�Ig � Mghh0�Uhÿh0 � Ngh�sh; �20�
where

Mghh0 �
P
jj0l

Cj
gC�j

0
g C

�j
h Cl

h0

� fcos���l ÿ �j0 �t� � cos���j ÿ �j0 �t�=��l ÿ �j�g
� C�l0 C

j0
0 � Cj

gC�j
0

g C
�j
h C

j
h0

� sin���j ÿ �j0 �t�C�j0 C
j0
0 �21�

and
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Ngh �
P
jj0 l

Cj
gC�j

0
g C

�j
h Cl

h

� fcos���0 ÿ �j0 �t� � cos���j ÿ �j0 �t�=��l ÿ �j�g
� C�l0 C

j0
0 � Cj

gC�j
0

g C
�j
h C

j
h

� sin���j ÿ �j0 �t�C�j0 C
j0
0 : �22�

From equations (20), (21), (22), the Fourier coef®cients
of potential, neglecting absorption, can now be written
in terms of a linear tensor equation involving experi-
mentally observed and other known quantities:

�m0e=h- 2K��Mghh0Vhÿh0 � �Ig ÿ Ngh�sh; �23�
where � is de®ned as

� �
"

e�v

�ev�m0c2� ÿ
�m0c2 � eV��v

�2m0c2 � eV�v

#
: �24�

The use of the perturbation expansion can be justi®ed
when the size of the largest element of the matrix A
multiplied by the thickness is less than 0.1, which gives
an error of order 0.5% in the exit-surface wave function.
The largest element of A is approximately �t=�g, where
�g is an extinction distance for a strong low-order
re¯ection, and there is a limit on the thickness given by

�t

�g

"
e�v

�ev�m0c2� ÿ
�m0c2 � ev��v

�2m0c2 � ev�v

#
< 0:1: �25�

Alternatively, limits could be set for the voltage change
for a specimen of a given thickness. For a specimen in
the range of 1±2 extinction distances, the maximum
voltage change can be estimated as varying between
10 kV for 100 kV electrons to about 50 kV for electrons
of energy 400 kV. In Fig. 1, the use of perturbation
theory is compared to an exact calculation of thickness
fringes for a three-beam (111) systematic row of
aluminium when the voltage is raised from 100 to
105 kV. The curves are indistinguishable except at the
highest thickness, con®rming the validity of treating this
voltage change as a perturbation.

3. Nonlinear parameter estimation

In principle, it is only necessary to invert the matrix M in
(23) to directly calculate the desired Fourier coef®cients
of potential. This will not work as the matrix M depends
on eigenvalues and eigenvectors which themselves are
determined from the potential. Although it might be
possible to guess eigenvector components from sym-
metry considerations, the differences in eigenvalues will
almost certainly be directly related to the unknown
coef®cients of potential.

Instead, it should be possible to make use of these
results in a nonlinear potential ®tting scheme. In this
scheme, data points are generated by changing accel-
erating voltage as opposed to changing the angle of

incidence in a convergent-beam pattern. The difference
between beam intensities measured at two accelerating
voltages V1 and V2 is compared with the calculated
difference of the intensities using a given potential.

�Iexp
g � Iexp

g �V1� ÿ Iexp
g �V2� �26a�

�Icalc
g � Icalc

g �V1� ÿ Icalc
g �V2�: �26b�

The calculation could use the perturbation expressions
given above, i.e. equations (10), (11), (20), though this is
not a requirement. The sum of squares between the
experimental intensity difference and the calculated
intensity difference, �2 in (27) below, is then minimized;

�2 �P
g

wg��Icalc
g ÿ�Iexp

g �2; �27�

where wg are weighting factors. The value of �2 as a
function of the coef®cients of potential is a hypersurface
in the vector space de®ned by those coef®cients of
potential that are allowed to vary. The desired potential
vector corresponds to a global minimum of this hyper-
surface.

Fig. 1. Difference in intensity between 100 and 105 kV calculated
exactly (dashed line) and by perturbation theory (solid line) for (a)
the 000 beam and (b) the (111) beam in a three-beam 111 systematic
calculation for a 1000 AÊ thick aluminium specimen.



164 CRYSTAL POTENTIAL UNDER DYNAMICAL CONDITIONS

To examine the stability of this proposed scheme, it is
instructive to plot �2 to see how it varies as coef®cients
of potential are changed. Calculations were performed
for three different materials, assuming measurements
were taken at 100 and 105 kV. In Figs. 2, 3 and 4, the
variation of this surface is plotted as a function of the
magnitude of a given Fourier coef®cient of potential
de®ned by �Vg. The case � � 1 corresponds to the
correct value of the coef®cient. Fig. 2 represents a simple
three-beam calculation for 111 systematic diffraction
from 1000 AÊ thick aluminium. Fig. 3 shows results for an
eleven-beam calculation for the [110] zone of a GaAs
specimen 200 AÊ thick. Fig. 4 shows a seven-beam 002
systematic calculation for a 200 AÊ specimen of the high-
Tc superconductor YBa2Cu3O7ÿ�. A very well de®ned
minimum is observed for lower values of Fourier coef-
®cient such as Al 222, GaAs 002 and both 002 and 004
for the superconductor. For higher-valued Fourier
coef®cients such as Al 111 or GaAs 111, the minimum is
clearly apparent, though the parabolic shape only
extends over a variation of 30%. Sometimes a well
de®ned parabola is not achieved, usually when the
thickness is very close to a multiple of the extinction

distance. The curve showing the variation of �2 with 111
Fourier coef®cient of potential of GaAs shows a very
indistinct minimum for a specimen of 200 AÊ thickness at
intensities calculated for 400 and 420 kV (see Fig. 5).
The remedy is to operate at a voltage that changes the
effective extinction distance and avoids this particular
problem.

Various simulations of a procedure to solve the
inverse problem using this method were tested using

Fig. 2. �2 for variation of the (a) 111 and (b) 222 coef®cients of
potential of aluminium for a voltage difference of 5 kV on 100 kV.
The specimen thickness was 1000 AÊ .

Fig. 3. �2 for variation of the (a) 111, (b) 220 and (c) 002 coef®cients of
potential of GaAs for a voltage difference of 5 kV on 100 kV. The
specimen thickness was 200 AÊ .
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intensities calculated for voltages of 100 and 105 kV. The
most stable procedure is to vary the coef®cients of
potential in order, starting with the strong low-order
Fourier coef®cients, and take two values on either side
of the starting estimate. Parabolic interpolation (Brent's
method) can be used to determine the position of the
minimum of the �2 hypersurface from the three �2

values.

4. Determining potentials from complex amplitudes

The procedure to determine the potential becomes
much simpler if the complex amplitude is available. In
principle, a complex exit-surface wave function can be
determined using holography (Lichte, 1986) or focal-
series reconstruction (Van Dyck & Coene, 1987), though
it will be limited to a region in reciprocal space set by the
instrumental limits of the microscope. Spence (1998) has
outlined a procedure to determine all the elements of
the matrix S, which gives the complex wavefunction for a
series of tilts equal to the number of beams in the
diffraction pattern. For the method to work, the
magnitude of the Fourier coef®cient of potential should
reach some small (and numerically negligible) value for
re¯ections at the edge of the zeroth-order Laue zone. If
it is assumed, for the moment, that a method does exist
to determine the complex exit-surface wave function for
a suf®cient number of re¯ections, the wave function for
one voltage can be written as

u1�t� � exp�iAt�u�0� �28a�
and the wave function for the second voltage as

u2�t� � exp�i�A��A�t�u�0�: �28b�
In general, it is not legitimate to express the exponential
of the sum of two matrices as the product of the expo-
nentials of the individual matrices. If �A is suf®ciently
small then the separation

exp�i�A��A�t� � exp�iAt� exp�i�At� �29�
can be performed with an error term proportional to the
commutator of A and �A,

�1=2!��A;�A�t2 � �1=2!��A ��Aÿ�A �A�t2; �30�
given by Zassenhaus's theorem (Gantmakher, 1959). An
alternative formulation (Van Dyck, 1985)

Fig. 5. �2 variation for variation of the 111 coef®cients of potential of
GaAs for a voltage difference of 5 kV on 400 kV. The specimen
thickness was 200 AÊ .

Fig. 4. �2 for variation of the (a) 002, (b) 004 and (c) 006 coef®cients of
potential of YBa2Cu3O7ÿ� for a voltage difference of 5 kV on
100 kV. The specimen thickness was 200 AÊ .
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exp�i�A��A�t� � exp�i�A=2�t� exp�i�At� exp�i�A=2�t�
�31�

gives an error term proportional to t3.
Writing A � U� S and

�A � �U� ��ÿ e�v=�m0c2 � ev��S; �32�
it is easy to show using (30) that the error term is

�e�v=2�m0c2 � ev���S;U�t2; �33�
since any matrix, by de®nition, commutes with itself.
This is identical, apart from a constant, to the corre-
sponding error term for the multislice algorithm
(Goodman & Moodie, 1974). From (33), it is apparent
that the success of the multislice algorithm is a conse-
quence of the small value of the commutator because
when the diagonal excitation error terms are large the
coef®cients of potential are small, and when the coef®-
cients of potential are large the excitation errors are
small. If a slice thickness �t gave an acceptable wave
function in a multislice calculation for a crystal of
thickness t, then a voltage difference �v,

e�v � 2�m0c2 � eV���t=t�1=2; �34�
would still be within the limits of the approximation.

A simple algorithm to determine the potential can be
developed from (29). The ®rst step is to divide the real-
space wave function at the second voltage by the real-
space wave function at the ®rst voltage. The effects of
the known excitation error are separated from the
`phase grating' by dividing by a modi®ed `propagator' in
reciprocal space. This is analogous to running a `multi-
slice' algorithm backwards over one slice. Taking the
logarithm should yield the potential

V�r� � 1

i�t

 
h- 2K

m0e

!
ln

"
FTÿ1

 
FT

"
'2�r; t�
'1�r; t�

#

� exp

(
ÿ i

"
�ÿ e�v

�m0c2 � ev�

#
St

)!#
; �35�

where FT denotes Fourier transformation. There should
be no dif®culty with multiple possibilities from the
complex logarithm as the value of � can be adjusted to
ensure that �Ug is always less than one. A simulation of
this procedure is depicted in Fig. 6, where the magni-
tudes of the Fourier coef®cients of potential along the
[00l] direction for the superconductor YBa2Cu3O7ÿ�, as
determined from calculated complex wave functions for
200 and 220 kV, are compared with the input potential
calculated using the X-ray scattering factors of Doyle &
Turner (1968). The specimen thickness was 200 AÊ , and
the result shows that this method could be of value in
crystal structure determination under dynamical condi-
tions. From (31), the potential would have to be recov-
ered in an iterative scheme.

5. Practical implementation

Microscopists (except those who perform critical-
voltage measurements) do not think of accelerating
voltage as a parameter that is under their control. The
usual practice is to set the voltage to the highest (stable)
operating value and leave it there for the entire micro-
scope session. The schemes proposed above depend on
changing the accelerating voltage by a few kV. These
changes may not correspond to the ®xed operating
voltages allowed by the manufacturers of some instru-
ments. The accelerating voltage is ultimately derived
from a reference potential which is supplied by a high-
precision (16 bit) DAC (digital-to-analog converter) in
modern instruments. The accelerating voltage can easily
be changed by a few kV by writing a different value to
the DAC (if this is not allowed already). The microscope
manufacturers put considerable effort into designing an
instrument that keeps an image or diffraction pattern
in focus as the accelerating voltage is changed. The
currents through all the lenses have to be altered,
though in the modern computer-controlled instrument
this is not a problem. The lens currents are controlled by
DACs and the digital values for a range of accelerating
voltages can be stored in memory (usually EPROM).
Values for voltages not stored in memory can easily be
generated by interpolation.

Changes in detector response for electrons of
different voltage might also be a problem for either of
the methods described above. For a small change in
voltage, this should be quite small, though it should be
possible to correct for detector response by recognizing
that the signal from a detector is proportional to the
square of the velocity of the fast electrons and multi-
plying any signal by 1ÿ 1=�1� ev=m0c2�2.

Fig. 6. Simulation of the procedure to recover the (00l) Fourier
coef®cients of potential for the superconductor YBa2Cu3O7ÿ� using
calculated amplitudes for 200 and 205 kV from a 200 AÊ thick
specimen. The solid line and open squares represent the magnitude
of the original potential, the dashed line and ®lled circles show
values recovered by the procedure.
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Examination of the �2 surfaces given as Figs. 2Ð5
shows that �2 is quite small since it is the square of the
difference between two small numbers. The experi-
mentally measured value of �2 is derived from the
difference between intensities at two voltages and might
therefore be very sensitive to noise. An approximate
estimate (assuming single electron counting) would
suggest that hour long acquisition times might be
needed for weaker beams, even assuming that the
intensity is recorded over 100 pixels of the detector
array. It would be an advantage to average over as many
pixels as possible and to record the data at high camera
length.

In the scheme using the complex amplitude, the main
problem is the ampli®cation of noise that takes place
when one wave function is divided by another. This
might not cause insurmountable dif®culties as these are
real-space wave functions corresponding to a modula-
tion superimposed on a much higher constant back-
ground. Problems associated with dividing by very small
numbers, which plague deconvolution schemes in elec-
tron-loss spectroscopy, should therefore be avoided.

6. Conclusions

Accelerating voltage is a parameter like tilt or angle of
incidence that can be varied to generate useful data. It is
particularly useful because the voltage variation of the
potential and the voltage variation of the excitation
errors is different due to the relativistic nature of elec-
trons at microscope energies. Since variations in voltage
of up to 50 kV are small compared to the electron rest
mass, changes in intensity can be calculated by pertur-
bation theory.

It is possible to write down an expression for the
difference between intensities recorded at two closely
separated accelerating voltages that is linearly related to
the Fourier coef®cients of potential. Unfortunately, the
coupling tensor depends on the eigenvectors which
require a knowledge of the potential to be determined.
Accordingly, a nonlinear parameter estimation scheme
must be used. A response function can be de®ned by
the square of the difference between calculated and
experimental intensity differences. Plots of the response
surface for a number of examples show that the desired
potential corresponds to a global minimum and that the
surface is approximately parabolic when the Fourier
coef®cient of potential is varied over a range of a
minimum of �30% from the nominal value. A simple
scheme based on parabolic interpolation could be used
to ®nd the Fourier coef®cients of potential in succession.
Possible dif®culties with this scheme are related to the
small values of the response function, implying that
excellent statistics and lengthy data-collection times will
be required.

If the complex exit-surface wave function were
available, then wave functions recorded at two voltages
can be used to generate the potential by a simple scheme
similar to the propagation over one slice in the multislice
algorithm. In retrospect, it is not surprising that a closed-
form expression can be written when both amplitude
and phase are available, but that a nonlinear parameter
estimation is needed when phases are lost. Some starting
estimate for the potential will therefore be needed
under these conditions. It would seem that expanding
the range over which the response surface is well
behaved is the best that can be achieved when only
intensities are recorded.

Alec Moodie inspired all my attempts at tackling the
inversion problem. I shall never forget his kindness and
enthusiasm during my years at Oxford. My exploration
of voltage variation started while I was at VG micro-
scopes, and continued at a slow pace while at ASU. I
should like to thank Alec Moodie, Colin Humphreys,
John Spence, L.-M. Peng, S. L. Dudarev and J. M. Zuo
for many stimulating discussions over the years and
R. Dunin-Borkowski for a critical reading of the
manuscript.
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